

The Past, Present and Future of the Regional Environmental Monitoring and Assessment Program

EMAP's GOAL

 Build the scientific basis, and the local, state, and tribal capacity, to monitor for status and trends in the condition of the Nation's aquatic ecosystems

- -Cost-effective
- Scientifically-defensible and representative
- -Quantifiable trends
- Supports performance-based management (GPRA)

Conventional Monitoring

- > \$650M/y spent on environmental monitoring by Federal Government
- Most is targeted to individual chemicals and to physical conditions at specific sites
- Point source problems have been greatly reduced

Cost Effectiveness of EMAP Approach

- Alabama monitoring costs 25% less, with more and better information
- Eutrophication of NE US lakes
 - -2756 non-random lakes censused (Rohm et al. 1995)
 - EMAP reached same conclusion with only 344 lakes

Sound Scientific Basis for EMAP Approach

Publications

- >600 peer reviewed EMAP publications
- Recent peer review by Ecological Society of America and American Statistical Association
 - "...panel strongly supports the use of probability-based sample designs...GIS-based approaches provide important pattern and connectivity information...REMAP demonstration programs have put EMAP at the forefront of having solid data from both probability sampling and a GIS-based design..." (ESA and ASA 1998)

Environmental Decisions Using EMAP Science

- Region 3 Mountain-top removal mining impacts
- Maryland State of the Streams Report
- Oregon Revised coho salmon assessment program
- Maine Fish consumption advisory for Mercury

Unanswered Monitoring Questions

- How much of our state/national aquatic ecosystems are healthy?
- Are we targeting the right problems to make a difference?
- How do we measure trends in the condition of aquatic ecosystems?
- How do we determine this in a cost-effective, scientifically-defensible, and credible way?
- How do we aggregate this information from the local to the state to the national levels?

Why an EMAP Approach?

- Only statistically-valid approach to determining state and national aquatic ecosystem condition
 - uses biological indicators (e.g., fish and benthic community structure) as integrators of aquatic ecosystem condition
 - establishes measurable baselines for health of aquatic ecosystems and assesses trends in condition
 - reduces costs and identifies most important areas and stressors
 - provides monitoring designs for consistent aggregation of data from local to national levels
- Already being used by states for improved assessments and better decision-making

EMAP Design Components

• Multi-Tier Monitoring Designs - scale defined design that allows aggregation and interpretation of monitored data

EMAP Research

State Use of Probability Survey Designs

• 1993-94 Fish tissue contamination I
Maine lakes

•1997-99 Assessment of Hg in waters, sediments, and biota of Vermont and New Hampshire lakes

•1997-98 Study of atmospheric Hg deposition in New England

•2001-02 Assessment of New England wadeable streams

•2003-04 Assessment of New England lakes and ponds

•1993-94 Sediment quality of the NY/NJ

harbor system

•1998-99 Trend assessment of the NY/NJ

harbor system

•1999-2000 Cohansey-Maurice-Salem

Rivers watershed assessment

•2001-02 Barnegat Bay estuary

assessment

•2003-04 Trend assessment of the NY/NJ

harbor system

•1993-95	Mid-Atlantic highland streams assessment
•1996-97	Development of a probability- based assessment of Maryland streams
•1998-99	Amphibian monitoring across the Mid-Atlantic states
•2000-01	Watershed-based monitoring of West Virginia streams
•2002-03	Probabilistic assessment of hydrophobic dissolved trace contaminants in non-tidal streams and rivers of Virginia
•2003-04	Validation and sensitivity analysis for rapid wetland assessments

•1992-94 Hg contamination of South

Florida ecosystems

•1994-95 Savannah River basins streams

assessment

•1996-98 South Florida ecosystem

restoration monitoring

•1998-2003 Hg contamination of South

Florida ecosystems—trend

assessment

•1999-2003 Southeastern wadeable streams

assessment

•1995-96	St. Louis River environmental influences on benthic communities		
•1995-96	Assessment of streams of the		
	Eastern Cornbelt Plains		
	ecoregion		
•1998-99	Assessment of streams of the		
	Northern Lakes and Forest ecoregion		
•2000-01	Assessment of Great Lakes coastal wetlands		
•2002-03	Wisconsin wadeable streams assessment		
•2003-04	Biological assessment of large rivers of the Upper		
Mississippi and Ohio Rivers Basins			

•1993-94	Galveston Bay/Corpus Christi toxic substances assessment
•1996-97	Habitat degradation in East Texas wadeable streams
•1998-99	Lower Chama/Gila River Basins stream assessment
•2001-02	Texas seagrass conservation monitoring
•2002-03	Assessment of the biological condition of Lousiana streams and rivers

•1994-95	Assessments of Kansas,	Missouri	& Nebraska streams
-----------------	------------------------	----------	--------------------

•1998-99 Landscape analysis of

Kansas streams and

rivers

•1999-2000 Continuation of

Kansas and Nebraska

stream surveys

•2001-02 Assessment of Iowa

streams and rivers

•2002-03 Assessment of Iowa

wetlands

•2003-04 Ecological classification of Nebraska streams and rivers

•1993-94 Assessment of mining impacts

on streams in the Southern

Rockies ecoregion

•1996-97 Utah rangeland condition

assessment

•1998-99 Montana prairie streams &

North Dakota riverine

wetlands assessments

•2000-04 EMAP Western streams

•1994-95 California Central Valley

stream assessment

•1997-2000 Assessment of the

Humboldt, Walker,

Muddy and Virgin Rivers

basins in Nevada

•2000-04 EMAP western streams

•1995-96 Assessment of Coast

Range streams in

Oregon and Washington

•1997-98 Assessment of the Upper

Deschutes River basin

•1999-2000 Assessment of streams of

the Western Cascade

Mountains of Oregon

and Washington

•2000-04 EMAP western streams

REMAP Other **Annual REMAP Funds Funds** and Partner (M)**(\$M)** Year **Project** 1993-94 **\$3.6 \$5.0 Expenditures** 1995-96 \$2.7 \$3.5 1997-98 \$3.0 \$3.4 \$2.2 1999-2000 \$3.7 2001-02 \$3.4 \$4.4 2003-04 \$4.2 \$7.3 **REMAP Funding by Region** REMAP Funding 3000 (\$1000)2000 1000 **Total REMAP=\$19.1M** 10 3 8 9 5 6 Total Projects=\$27.2M **Region**

Future Directions

- •305b/303d—EMAP/REMAP currently does a good job supporting 305b reporting, but needs to adjust designs to support 303d listing, TMDL and restoration.
- •Great Rivers—EMAP/REMAP has not addressed the large, floodplain rivers. New efforts to support 305b assessments of these systems.
 - Designs
 - •Methods
 - •"Reference" condition
- •National Stream Survey—a consistent, shore-to-shore assessment of wadeable streams of the US
- •Wetlands & Great Lakes
 - •Designs
 - •Methods
 - •"Reference" conditions

Great Rivers EMAP Sites

The National Stream Survey

EMAP Wetlands

EMAP Great Lakes

